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Abstract — By the reaction concept, a variational theory is established for

treating the scattering and propagation problem associated with a dielectric

waveguide which is illuminated by an obfiquely incident plane wave. The

theory is characterized by properly absorbing radiation and continuity

conditions into the variational equation. This equation is then solved by the

finite-element method together with the frontaf solution techniqne. In this

papei, the propagation constants of the guide are obtained by the procedure

of searching for the poles of the scattering coefficients when an inhomoge-

neous wave is incident. Two most attractive featares of this approach are

the avoidance of the spurious modes and the accuracy of the results even

for the modes near cutoff. Although the proposed theory may be applied to

dielectric waveguides of arbitraty cross section, only the one with rectangw

Iar shape is investigated in detail. Also included in this study are numericuf

results for the propagation constants in discussing the effects due to

differences in refractive indices, aspeet ratios, and index profiles.

I. INTRODUCTION

D IELECTRIC WAVEGUIDES find various applica-

tions in optical and millimeter-wave spectra. Hence,

various methods have been proposed to examine their

propagation characteristics. For homogeneous rectangular

waveguides, circular-harmonic computer analysis [1] and

some approximate methods [2], [3] have been adopted by

some investigators. For more complex waveguides with

complicated geometry and inhomogeneous material, the

finite-element method [4]–[7] and the finite-difference

method [8] may be applied to tackle the problem. By

extending the ideas in treating a metallic waveguide, the

existing literature assumes that the field outside the dielec-

tric structure (the exterior-field) vanishes at some distance

from the core [4], [6], [8] or decays in a prescribed manner

[5], [7]. Thus, to give accurate results, an artificial boundary

at a large enough distance from the guide must be chosen

in the process of solution. This is usually accompanied by

the appearance of many spurious modes and a deficit in

computer memory and CPU time. Besides, the results are

still unsatisfactory for the modes near cutoff due to the

improper assumption on the artificial boundary.

To resolve it, the radiation condition at infinity and the

continuity conditions across a suitable boundary must be

considered. This idea is properly absorbed in our study and
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Goell’s worlk [1]. With this, a complicated set of equations

are then formed and ,the conventional methods of solving

matrix eigenvalue equations fail. The Newton’s method can

thus be employed to search for the propagation constants

so that the determinant of the matrix vanishes [1]. How-

ever, as suggested by the work of wave propagation in a

slab structure [9], [10], this study adopts an equivalent but

more physical searching scheme based on the fact that the

propagation~ constants are actually the poles of the scatter-

ing coefficients when an inhomogeneous wave is incident.

The combination of the above two ideas has the ad-

vantages of avoiding the spurious modes in the matrix

eigenvalue solution and providing accurate results for the

modes near cutoff.

The problems of electromagnetic scattering by a dielec-

tric cylinder have been conducted [11], [12] only for the

normally incident case. The boundary conditions are of the

Dirichlet type or the Neumann type depending on whether

the E-wave (Hz = O) or H-wave (EZ = O) is considered. The

corresponding variational equation is thus easy to obtain

by conversion from an operator equation [12]. But it be-

comes difficult for the obliquely incident case since the

operator is no longer self-adjoint and the boundary condi-

tions are of the mixed type. Recently, a methodology called

variational electromagnetic [13], [14] has been established

to achieve the required variational equation from a funda-

mental variational principle. In their works, an adjoint

operator which is unnecessary to solve must be found in

advance.

In this paper, the reaction concept [15] is employed

directly to obtain the required variational equation with

the adjoint operator accompanied automatically. The new

theory is easy to apply to more complicated problems,

which is another feature of this approach. Since the exte-

rior field is expanded by the radiation condition into an

eigenfunction series [16] and is then coupled to the

boundary field by continuity conditions, the resultant vari-

ational equation contains only the field defined within a

bounded region. In this study, the equation will be solved

by the finite-element method [17] coupled with the frontal

solution technique [18].

As an application of the new theory, the” rectangular

dielectric waveguide will be examined more thoroughly,

which also includes the computational results for prcspa-

gation cha~acteristics corresponding to various guide

parameters.
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Fig. 1. Geometry of an arbitrarily shaped, inhomogeneous, and aniso-
tropic dielectric waveguide illuminated by an obliquely incident plane
wave.

H. STATEMENT OF THE PROBLEM

This study considers a uniform dielectric waveguide il-

luminated by a plane wave as shown in Fig. 1. The guide is

arbitrary in shape and consists of material with inhomo-

geneity and anisotropy. The permittivity tensor ; and

permeability tensor ~ of the material are functions of x

and y, but may be neither symmetric nor Hermitian.

Without loss of generality, we assume that a plane wave is

obliquely incident on the waveguide at an angle O with

respect to the z-axis. The field quantities then must have

the same phase factor e~twr - ~zj, where /3 is the wavenum-

ber in the z-direction and is related to the wavenumber kO

in free space by

/3= kocose. (1)

For excitation by a source or by incident waves other

than a plane wave, the field in free space can be expressed,

by a Fourier integral, as the superposition of plane waves

with the wavenumber in the z-direction in the range I~ 1<

co. Hence, in addition to the waves with propagation

directions in the angular range O < d <r, i.e., 1~I < ko,

there are waves with 1~1 greater than ko, Waves of this

type, which may be guided by the waveguide, are known as

inhomogeneous waves [19] and will be emphasized in this

paper.

To facilitate the analysis, we shall write the tensors as

‘=[ : ;]=[:l 21
~=[;;; iq=[:i::1 ‘2)

Here, the subscript t means the component transverse to

the z-direction, and the superscript T means the transpose

of a matrix. In what follows, we shall use the decomposi-

tion for vectors and the del operator:

A–= AXt + AY} + A:2 = A; + A,.2

(3)

The time and space harmonic dependence eJ(’[ - ~z) is

assumed and omitted throughout this paper.

111. VARIATIONAL FORMULATION

Let us establish a variational formulation for the two-

dimensional scattering problem defined by Fig. 1. In other

words, we try to find a functional 1 of a “trial field” such

that its first variation 81 vanishes at the true field of the

solution system [13], [14]. For this, we consider a trial field

(~, ~) supported by the trial sources

.7=V Xii– jui. E

~=–vX~–jw~.H. (4)

Note that these sources are zero in the solution system.

Thus, the reaction [15] between any arbitrary test field

(d~a, 8=) and the trial sources (~, ~) should vanish

when the trial field is equal to the true field, i.e.,

where the integration extends over the whole space. Note

also that the test field ( E“, %) may be identified with the

adjoint field of the previous study [13], [14].

Equation (5) is general but difficult of access unless we

can add some constraints to the trial sources. One suitable

simplification is to choose the (_E=,HZ) formulation, which

is equivalent to the constraint Jf = O and ikf~ = O. Together

with (4), the transverse components of the trial field (~,, Hr)

can thus be related to the longitudinal ones (Ez, HZ) by

[H

Et jcd;,, 1j~2X ‘1

ii, = j/3.2X – jco~f,

[B=]

“[–jtiirz O ‘1 O1“Hz

o jtipf: O –1
(6)

2 x vfHz “

Another constraint on the trial sources (J=, M,) is to

confine them within a finite region 0. To this end, a

mathematical circle T of radius rO is chosen so that all

inhomogeneous and anisotropic materials are enclosed

within the circular region fi (Fig, 2). The boundary condi-

tions are then matched on the artificial boundary r instead

of on the actual waveguide boundary r‘. Since the material

in region QO (r > r-.) is homogeneous, we can enforce

J, = O, MZ = O by expanding the trial field as the superposi-

tion of cylindrical wave functions. The field in region f10 is

the sum of the incident field and the scattered field, that is,

[4=[;1+[::1
(7)

where the superscripts i and s denote the incident and

scattered parts, respectively. The longitudinal components

of the incident field and the scattered field can be ex-

pressed as
. . . .

(8)
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Fig. 2. Region $2 with artificial boundary 17 (a mathematical circle of
radius r.) to enclose materiaf inhomogeneity and anisotropy. 17’ is the

actuaf waveguide boundary.

where kt = {~ and qO = {x. The expansion

coefficients for the E- and H-waves, efis and h ~, are

related to the field on the artificial boundary by

With the above constraints, the integration in (5) now

extends only over the region fl (r < ro); meanwhile, the

quantities involved are the longitudinal components

(8E:, 13H:) and (Jz, M=). By wing (4) for (Jz, Mz)i apply-

ing integration by parts, and then using [6)–(9) for the

transverse components (~,, ~,), we finally obtain the de-

sired variational equation

0 jaji~t

–1 o

0 –1

–1 o

0 –1 1

[

jctxo o
+( ’Z:)+ 7:)). o

– j~po 1

(lo)

where

Z(’) = k,r0.H:2)’(ktro )/H~2)[k,ro).
m

For the case with an inhomogeneous wave incident, we

“Fput k,r = – jv = – J /? – kO -r, whi~h is pure imaginary.

Then, the Bessel fu#lions in (8)–(10) should be replaced

by the modified Bessel functions; ~at is,

H~2)(– ju)=~. (j)m+l.Kw(u)

Jm(–ju)=(– j)m”Im(u). (11)

IV. FINITE-ELEMENT METHOD WITH FRONTAL

SOLUTION TECHNIQUE

The derived variational equation (10) will be solved by

the finite-element method. First, the region $1 is divided

into N triarigular elements with N, intervals in the radial

direction and NC intervals in the azimuthal direction. Fig. 3

shows one plossible mesh division in which N,= 5, NC= 6,

and N = (2N, – 1). NC= 54. In each element, the quadratic

interpolation model and the six-node basis functions [17]

are adopted in solution. The field $, which denotes EZ or

Hz, can thus be written as

where +$e) is the field value (the unknown) at the node Pi

of the element (Fig. 4). In this study, the six basis functions

are chosen as follows,

For corner nodes

For mid-side nodes

Here, 11,1,,13 are the local coordinates in an element [17].

The transformation between original coordinates and local

coordinates is defined by

[Jl=}l[:rl~l(ll’21’14)
Then, we need to calculate the integrals contributed

from each element. Here, analytic integration formulas are

unavailable whenever the matefial in an element is not

homogeneous; thus, numerical integration, e.g., the seven-

point Gauss–Hammer quadrature formula [17], is neces-

sary. When the incident wave is an inhomogeneous one,

there may exist a curve over which the matrix in (10) is

singular. Though this singularity is integrable, attention

should be paid in the numerical integration. In this paper,

the element boundary is chosen to be coincident with the

singular curve, if any. Then the integrand is finite inside an

element, and hence the quadrature formula can be em-

ployed directly.

Worthy next of separate consideration is the contribu-

tion from Ithe boundary element, the N + 1 th element,
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Fig. 3. Typical mesh division for rectangular dielectric waveguide. The
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Fig. 4. Mapping of elements: (a) locaf coordinates, and (b) originaf

coordinates. The circles are nodaf points, while the dots are sampling

points in the Gauss–Hammer quad~ature formula.
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Fig. 5. Nodes on the boundmy element and corresponding basis func-
tions.

along the mathematical circle 17. As shown in Fig. 3, the

circle has been uniformly divided into NC intervals. The

field on the boundary 17 is again expressed as

4’(+)= Zw+’)%(o) (15)

where +! ‘+ 1)’s are the unknown field values on r and

B, (+)’s are the corresponding basis functions (Fig. 5).

For continuity of the fields with (12), the basis functions

B, (+)’s are also chosen as quadratic functions of @ in each

interval. Hence, some analytic integration formulas for

/BZ(@)e~~@ d+ and ~B1(@)e-’m@ d+ should be employed

to compute the boundary-element matrix corresponding to

the last term in (10).

To assure that the space harmonics in (8) can express the

boundary fields at the sampled nodes properly, the number

of terms included in (10) should be chosen no less than the

number of nodes along the boundary. For the case shown

in Fig. 3, where electric and magnetic conductors may be

placed in the x – z and y – z planes, odd space harmonics

of 2NC + 1 terms, at least, are needed to give satisfactory

results in computation.

Finally, the variational equation (10) is solved by the

Ritz method. This then leads to a matrix equation

[P]. [’l’]= [s] (16)

where [‘Y] is the column vector composed of the nodal

unknowns, while [P] and [S] are known matrices. The

matrix [P] is of the banded type and is obtained by

assembling the contribution from each element. Though

(16) can be solved efficiently by various numerical tech-

niques [17], computer core memory may still be inadequate

to store all the nonzero terms of [P] when the system is

extremely large. In such a case, the frontal solution tech-

nique [18], which is advantageous in the use of core mem-

ory, is recommended in numerical computation.

The basic ideas of this technique can be briefly de-

scribed. While assembling the element matrices, the nodal

unknown is eliminated as long as every element containing

the node has been accounted for. The corresponding rows

of [P] and [S], after eliminating this unknown, are stored

in an auxiliary storage and are free from the core memory

for the element to be assembled next. After all elements are

assembled and all unknowns are eliminated, the equations

in the auxiliary storage are read in reverse order and the

unknowns are solved by successive back-substitution. It is

the back-substitution process that takes much CPU time.

The efficiency of this technique relies on the element

numbering scheme rather than the node numbering scheme.

For scattering problems, the scattered field, which we are

more interested in, is directly related to the boundary field.

Hence, by assembling the last element corresponding to the

boundary one, we may obtain a set of equations involving

only the unknowns on the boundary 17.Since the boundary

field can be solved by these equations, it is unnecessary to

call for the auxiliary storage to execute the time-consuming

back-substitution process. For the typical mesh shown in

Fig. 3, the number of total unknowns is 250 and the

front-width is 36; however, the actually required core mem-

ory for handling [P] is only about 650 ( = 362/2)!

V. NUMERICAL RESULTS

A Fortran program for an arbitrarily shaped, inhomoge-

neous, and anisotropic dielectric waveguide (Fig. 1) has

been implemented on a VAX-11/780 mini-computer.

However, only the computational results for the guide with

rectangular cross section and inhomogeneous material are

presented in this paper. Especially for the rectangular one,

we have made full use of the waveguide symmetries so that

the computational loads may further be reduced.

The rectangular dielectric waveguide under considera-

tion has dimension a x b (a> b) as shown in Fig. 6(a).

This study deals mainly with two specific ty~

tive index, namely the step-index profile

{
nz(x, y) =Cr(x, y)= ;?’

1x1< a/2,

> elsewhere

;s of refrac-

Y]< b/2

(17)
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step-index image guide. Parameters used are a = A., b/2 = AO/2, and
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and the a-power profile
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n’(x, y)=n:-(n:-l)[f(x, y)]a (18)

where

max(12x/al, 12y/bl),
W)=(I,

1x1< a/2, I.YI < b/2,

elsewhere.

Note that the a-power profile reduces to the step-index one

as a tends to infinity.

First consider the image guide shown in Fig. 6(b), which

is a special case of the rectangular dielectric waveguide

(Fig. 6(a)) possessing the symmetry when a perfect electric

conductor is inserted in the center x – z plane. Let an

E-wave with a propagatiofi vector in the y – z plane be

incident upon the image guide with an angle O with respect

to the z-axis (Fig. 6(c)). The guide dimension is a = A o and

b/2 = AO/2, where AO is the wavelength in free space. As a

check of the program, we consider a step-index waveguide

with dielectric constant c,= 1.5. The longitudinal compo-

nent of the incident field now takes the form

E~=2j. sin(kOy. sin8) (19)

due to the presence of the electric conductor.

The.scattering coefficients e; and h:, defined in (8) and

(9), for various incident angles S3are shown in Fig. 7. Since

the incident wave is also symmetric with respect to the y – z

plane, the scattering coefficients for even m vanish. For

the normal incident case, i.e., 0 = 90°, the E- and the

H-waves are separable and, hence, h;’s are zero. And for

the oblique incident case where O + 90°, both E- and

H-waves are excited and coupled as reflected in Fig. 7.

Especially for the grazing incident case (f3 = 00), both

Fig. 8. Scattering coefficients for an inhomogeneous wave incident (1/3]
> k.), The sl~ep.index image guide considered has parameters: a = 2A.,

b/2 = Ao, and e, =1.5. Depicted in the figure are four poles which

correspond to guided modes E<’, E&, E{’, and E~l.

waves are so strongly coupled that the scattered wave is

dominantly an HE-wave [20].

The scattering coefficients for I~ I > ko, which ~ pro-

vide a significant physical implication (such as revealing

the guidance of waves), are discussed in the following.

Fig. 8 shows the normalized scattering coefficient

le~l -exp( – ~!lk,lr) for the image guide as defined by Fig.

6(b). The most attractive point abc?ut the figure is that

there exist poles of the scattering coefficient, which corre-

spond to the propagation constants of guided modes in the

waveguide.

Now, one may suggest two properties to. facilitate the

searching scheme for each pole /3.: 1) the sign of the

scattering coefficient changes when /? is across PO, and 2)

the reciprocal of the scattering coefficient is essetitially

linear near & For the guide consisting of lossy material,

the pole /30 is complex. One ‘must seek the pole in the

complex plane, and the Bessel functions with complex

arguments should be required. However, when the material

is of low-loss tangent, the pole is near the real axis.

Therefore, cme need only search for two /3’s near the pole

along the real axis and then employ the rule of “false

position” to calculate the approximate /?O [21].

The aforementioned pole searching scheme will be

utilized to calculate the propagation constants of the wave-

guide. The corresponding dispersion curves will be given in

terms of the normalized propagation constants 9,2 and the
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Fig. 9. Comparison of our msmericaf results, dispersion relations of
principal modes Efi and fi~l, with those of previous works. Siep-index
rectangular dielectric waveguide is adopted with parameters: n. =1.5

and a/b = 2.

normalized frequency .47 [1] where

~,= (mJ2-1
n~-1

~=~”m. (20)
o

A note on the steps in seeking a pole is also worth

mentioning. For any given .4?, two points of @2 in the

interval (0, 1) are first chosen so that the scattering coeffi-

cients have a 180° phase shift. The poles can thus be found

by employing the Mueller’s iteration scheme of successive

bisection and inverse parabolic interpolation [22]. Gener-

ally speaking, one takes six iterative steps, at most, to give

satisfactory results for each pole.

Remaining is the study of the rectangular dielectric

guides as shown in Fig. 6(a). Here, various symmetries with

respect to the x – z plane and the y – z plane are utilized to

reduce the computer memory and time. For instance, to

discuss the principal mode E:, which has the transverse

E-field polarized dominantly in the x-direction, an electric

conductor and a magnetic conductor may be placed over

the y – z plane and the x – z plane, respectively, without

disturbing the field distribution. The other principal mode

E:l can be found with the two symmetries interchanged.

For the step-index waveguide with aspect ratio a/b= 2

and refractive index n.= 1.5, the computed dispersion

relations of these two principal modes are shown as dot

points in Fig. 9. They are also compared with those of

Goell’s [1] and Marcatili’s [2] works. The excellent agree-

ment with Goell’s results, at least, supports the correctness

of our program. For the typical mesh division in Fig. 3, the

CPU time required on the VAX-11/780 mini-computer to

compute an eigenvalue is about 2 min. It is also found that

this time increases nearly proportional to the square of the

total number of elements.

In Fig. 10, we examine the effect of various a-power

profiles on the principal mode E: of the rectangular

waveguides with n.= 1.5 and a/b= 1. Since the two prin-

cipal modes are degenerate in this case, no specification on

polarization is indicated. Note that for larger values of a,

100

080
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“s

040

020

0%00 100 200 300 400

9
Fig. 10. Dispersion relations of principaf mode Efl with a as parame-

ters. Rectangular guide of a-power profile is considered-with a/b= 1

and n, =1.5.

%
Fig. 11. Dispersion relations of principal mode ,?fi with An= ( = n ~ - 1)

as parsimeters. Rectangular guide of a-power profile is adopted with
a/b=l and a=2.

,

k

005 -

!3
Fig. i2. Effect of aspect ratios on the difference of normrdized propa-

gation constants between two txincipaf modes. The curves are for
~ecthgular dielectric waveguide~ of acpower profile with n ~ = 1.5 and

the corresponding propagation constant is larger, and hence

the field is more confined in the guide.

The effect due to the difference in refractive indices, i.e.,

An, = n ~ -1, is presented in Fig. 11. The guides concerned

here are of unity aspect ratio and parabolic index profile,

i.e., a = 2.

For the waveguides with aspect ratio greater than 1.0,

the two principal modes Efi and Efl are no more degener-

ate. The associated birefringence is important in polariza-
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tion-sensitive devices. For this usage, a single-mode wave-

guide should be chosen based on practical consideration.

In this case, the theory proposed in this paper is very

promising since the fields of the two principal modes are

not well confined in the waveguide structure. As an exam-

ple, we consider the rectangular waveguides with a para-

bolic index profile and n ~= 1.5. The difference of the

propagation constants A@ 2 between these two polariza-

tions is shown in Fig. 12. Guides with various aspect ratios

such as a/b = 4/3, 2, 3, and infinity have been considered.

Note that the curve for the infinity aspect ratio is obtained

from the analysis of the slab case.

VI. CONCLUSIONS

By the reaction concept, and coupled with the radiation

and continuity conditions, a variational reaction theory has

been established and applied to attack the problems of

electromagnetic scattering by dielectric waveguides. The

derived variational equation has been solved by the

finite-element method together with the frontal solution

technique. It has been found that more accurate results can

be obtained due to the proper handling of the boundary

conditions. The versatility of the new approach is reflected

in the use of the finite-element method, which can easily

and systematically tackle the waveguides with complex

geometries and general material media. The developed

program has been found very powerful due to a large

reduction in core memories via the frontal solution tech-

nique so that CPU time is the only factor of limitation.

In this paper, the poles of the scattering coefficients have

been investigated thoroughly and related to the propa-

gation constants of the waveguides. The scattering analysis

may also be applied to characterize the phenomena such as

the longitudinal shift and the wave shaping of an incident

beam. Besides, this theory can be applied easily to other

complex problems. Some related works (for instance, the

study of dielectric waveguide junctions or discontinuities)

are
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in progress and will be reported in the near future.
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