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On the Variational Reaction Theory for
Dielectric Waveguides

RUEY-BEEI WU anp CHUN HSIUNG CHEN

Abstract — By the reaction concept, a variational theory is established for
treating the scattering and propagation problem associated with a dielectric
waveguide which is illuminated by an obliquely incident plane wave. The
theory is characterized by properly absorbing radiation and continuity
conditions into the variational equation. This equation is then solved by the
finite-element method together with the frontal solution technique. In this
paper, the propagation constants of the guide are obtained by the procedure
of searching for the poles of the scattering coefficients when an inhomoge-
neous wave is incident. Two most attractive features of this approach are
the avoidance of the spurious modes and the accuracy of the results even
for the modes near cutoff. Although the proposed theory may be applied to
dielectric waveguides of arbitrary cross section, only the one with rectangu-
lar shape is investigated in detail. Also included in this study are numerical
results for the propagation constants in discussing the effects due to
differences in refractive indices, aspect ratios, and index profiles.

I. INTRODUCTION

IELECTRIC WAVEGUIDES find various applica-
tions in optical and millimeter-wave spectra. Hence,
various methods have been proposed to examine their
propagation characteristics. For homogeneous rectangular
waveguides, circular-harmonic computer analysis [1] and
some approximate methods [2], [3] have been adopted by
some investigators. For more complex waveguides with
complicated geometry and inhomogeneous material, the
finite-element method [4]-[7] and the finite-difference
method [8] may be applied to tackle the problem. By
extending the ideas in treating a metallic waveguide, the
existing literature assumes that the field outside the dielec-
tric structure (the exterior-field) vanishes at some distance
from the core [4], [6], [8] or decays in a prescribed manner
[51, [7]. Thus, to give accurate results, an artificial boundary
at a large enough distance from the guide must be chosen
in the process of solution. This is usually accompanied by
the appearance of many spurious modes and a deficit in
computer memory and CPU time. Besides, the results are
still unsatisfactory for the modes near cutoff due to the
improper assumption on the artificial boundary.
To resolve it, the radiation condition at infinity and the
continuity conditions across a suitable boundary must be
considered. This idea is properly absorbed in our study and
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Goell’s work [1]. With this, a complicated set of equations
are then formed and the conventional methods of solving
matrix eigenvalue equations fail. The Newton’s method can
thus be employed to search for the propagation constants
so that the determinant of the matrix vanishes [1]. How-
ever, as suggested by the work of wave propagation in a
slab structure [9], [10], this study adopts an equivalent but
more physical searching scheme based on the fact that the
propagation constants are actually the poles of the scatter-
ing coefficients when an inhomogeneous wave is incident.
The combination of the above two ideas has the ad-
vantages of avoiding the spurious modes in the matrix
eigenvalue solution and providing accurate results for the
modes near cutoff.

The problems of electromagnetic scattering by a dielec-
tric cylinder have been conducted [11], [12] only for the
normally incident case. The boundary conditions are of the
Dirichlet type or the Neumann type depending on whether
the E-wave (H, = 0) or H-wave ( E, = 0) is considered. The
corresponding variational equation is thus easy to obtain
by conversion from an operator equation [12]. But it be-
comes difficult for the obliquely incident case since the
operator is no longer self-adjoint and the boundary condi-
tions are of the mixed type. Recently, a methodology called
variational electromagnetics [13], [14] has been established
to achieve the required variational equation from a funda-
mental variational principle. In their works, an adjoint
operator which is unnecessary to solve must be found in
advance.

In this paper, the reaction concept [15] is employed
directly to obtain the required variational equation with
the adjoint operator accompanied automatically. The new
theory is easy to apply to more complicated problems,
which is another feature of this approach. Since the exte-
rior field is expanded by the radiation condition into an
eigenfunction series [16] and is then coupled to the
boundary field by continuity conditions, the resultant vari-
ational equation contains only the field defined within a
bounded region. In this study, the equation will be solved
by the finite-element method [17] coupled with the frontal
solution technique [18].

As an application of the new theory, the rectangular
dielectric waveguide will be examined more thoroughly,
which also includes the computational results for propa-
gation characteristics corresponding to various guide
parameters.
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Fig. 1. Geometry of an arbitrarily shaped, inhomogeneous, and aniso-

tropic dielectric waveguide illuminated by an obliquely incident plane
wave.

II. STATEMENT OF THE PROBLEM

This study considers a uniform dielectric waveguide il-
luminated by a plane wave as shown in Fig. 1. The guide is
arbitrary in shape and consists of material with inhomo-
geneity and anisotropy. The permittivity tensor € and
permeability tensor g of the material are functions of x
and y, but may be neither symmetric nor Hermitian.
Without loss of generality, we assume that a plane wave is
obliquely incident on the waveguide at an angle 6 with
respect to the z-axis. The field quantities then must have
the same phase factor ¢/(“~#2) where 8 is the wavenum-
ber in the z-direction and is related to the wavenumber &,
in free space by

B =kycosd. (1)

For excitation by a source or by incident waves other
than a plane wave, the field in free space can be expressed,
by a Fourier integral, as the superposition of plane waves
with the wavenumber in the z-direction in the range |B| <
oo. Hence, in addition to the waves with propagation
directions in the angular range 0 <8 <7, ie., |B8|<k,,
there are waves with |B| greater than k, Waves of this
type, which may be guided by the waveguide, are known as
inhomogeneous waves [19] and will be emphasized in this
paper.

To facilitate the analysis, we shall write the tensors as

€ € € = _
~ Xx xy Xz €tt etz
E=1E€ € € -
€= 1 Fyx ry yz1=1-r
€ €
EZ.’C €Zy EZZ 2t 2z
lu‘xx lu‘xy nU‘xz ﬁ ﬁ
= 1t tz
p=|Flye By My |= T . (2)
‘P'zx Bzy Mgz Pze  Mz:

Here, the subscript + means the component transverse to
the z-direction, and the superscript 7 means the transpose
of a matrix. In what follows, we shall use the decomposi-
tion for vectors and the del operator:

A=AS+ AP+ A.2=A4A,+A4,2

z

3. 9. 4, _ .
V=gt 8yy+ 2, 2=V JB2. (3)
The time and space harmonic dependence e/(“~F?) is

assumed and omitted throughout this paper.
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Let us establish a variational formulation for the two-
dimensional scattering problem defined by Fig. 1. In other
words, we try to find a functional I of a “trial field” such
that its first variation 8/ vanishes at the true field of the
solution system [13], [14]. For this, we consider a trial field
(E, H) supported by the trial sources

J=v X H- jwé-E

M=~-v XE - joi-H. 4)
Note that these sources are zero in the solution system.
Thus, the reaction [15] between any arbitrary test field
(8E“, 8H®) and the trial sources (J, M) should vanish
when the trial field is equal to the true field, ie.,

VARIATIONAL FORMULATION

81=/(6E“-f— SH*M)dQ =0 (5)
where the integration extends over the whole space. Note
also that the test field (E¢, H*) may be identified with the
adjoint field of the previous study [13], [14].

Equation (5) is general but difficult of access unless we
can add some constraints to the trial sources. One suitable
simplification is to choose the (E,, H,) formulation, which
is equivalent to the constraint J,=0 and M, = 0. Together
with (4), the transverse components of the trial field (E,, H,)
can thus be related to the longitudinal ones (E,, H,) by

[E, [jwezn B2 X ] 1
H| |jBzx - jei,
E,
—jwg, 0 =1 0 H,
{ 0 jei,. 0 —1}' EXVH, | ()
X V,E,

Another constraint on the trial sources (J,, M,) is to
confine them within a finite region Q. To this end, a
mathematical circle I' of radius 7, is chosen so that alt
inhomogeneous and anisotropic materials are enclosed
within the circular region § (Fig. 2). The boundary condi-
tions are then matched on the artificial boundary T instead
of on the actual waveguide boundary I'’. Since the material
in region £, (r>r,) is homogeneous, we can enforce
J, =0, M, =0 by expanding the trial field as the superposi-
tion of cylindrical wave functions. The field in region £, is
the sum of the incident field and the scattered field, that is,

HEHER ®

where the superscripts / and s denote the incident and
scattered parts, respectively. The longitudinal components
of the incident field and the scattered field can be ex-

pressed as
E; e, "
[ J=Zl: jl‘]m(ktr)'ej ¢

noH; m | P
E; €
i =>:[hs }H,?(k,r)-ef"@ ®
[ 4 m m
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Fig. 2. Region @ with artificial boundary T (a mathematical circle of
radius r,) to enclose material inhomogeneity and anisotropy. I/ is the
actual waveguide boundary.

where k,=yk{—PB> and m,=p,/€,. The expansion
coefficients for the E- and H-waves, e,,° and h}°, are

related to the field on the artificial boundary by

en| 1 el Ej(rg,9) | e
- ‘ £ 4
[h'm] 277[) 1o H (15, 9) | Tm(kiro) ¢
€ 1 2qf Ej(r5,9) e=ime
-= £ _ds. (9
[hin] 2"'/‘; Mo H: (15, 0) | HP (k1) ¢ 0

With the above constraints, the integration in (5) now
extends only over the region £ (r <r;); meanwhile, the
quantities involved are the longitudinal components
(8E£,8H) and (J,, M,). By using (4) for (J,, M,), apply-
ing integration by parts, and then using (6)—(9) for the
transverse components (E,, H,), we f1nally obtain the de-
sired variational equation

8I=0
Eza- T —jwéz; 0
H! .=
=fd9 N 0 jwpl,
Q V4 thHz -1 0
ZXWV,E} | 0 -1
[ jwé, jBex ' [-jws, 0O -1 0]
L]:BE X = jw"z“tt 0 Jop,, . 0 _1_
H, fdsz Ef|T | Jwe.. o ]| E, |
X v,H, Q H? 0 —Jjop . | | H, |
| 2 X V,E,
1 27 Eza(r0’¢) T
— —— e!’”‘l’d
2ak? %fo {Hf("o,(ﬁ) ¢
X waOZ:(nZ) _mB .f27' Ez(r09¢) e"’”“l’d¢
-mp — jopZP | Yo H,(ry,9)

+(zg>_zg>).[j“;‘° _J(_L“ ]
s 0

E;(ro,w}e_,md ¢}
Hz'(’o,‘i’)

27

(10)

0
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where
ZD =k I (ko) /7,,(k o)
Z@ =k HO' (ko) /HD (K 15).

For the case with an inhomogeneous wave incident, we
put k,r = — jo=— jyB>— k{ -r, which is pure imaginary.
Then, the Bessel functions in (8)- (10) should be replaced

by the modified Bessel functions; that is,
HP (= jo) =2 ()" K ()

Tu(= o) = (= )" L, (v).

IV. FINITE-ELEMENT METHOD WITH FRONTAL
SOLUTION TECHNIQUE

(11)

The derived variational equation (10) will be solved by
the finite-element method. First, the region @ is divided
into N triangular elements with N, intervals in the radial
direction and N, intervals in the azimuthal direction. Fig. 3
shows one possible mesh division in which N, =35, N,=6,
and N=(2N,—1)-N,=54. In each element, the quadratic
interpolation model and the six-node basis functions [17]
are adopted in solution. The field 1, which denotes E, or
H,, can thus be written as

(12)

where () is the field value (the unknown) at the node P,
of the element (Fig. 4). In this study, the six basis functions
are chosen as follows.

For corner nodes

B1(11,12,13)=11-(211
For mid-side nodes
B4(ll,12,13)=4ll'12,etc. (13)

Here, /,,1,, [, are the local coordinates in an element [17].
The transformation between original coordinates and local
coordinates is defined by

-2

Then, we need to calculate the integrals contributed
from each element. Here, analytic integration formulas are
unavailable whenever the material in an element is not
homogeneous; thus, numerical integration, e.g., the seven-
point Gauss—Hammer quadrature formula [17], is neces-
sary. When the incident wave is an inhomogeneous one,
there may exist a curve over which the matrix in (10) is
singular. Though this singularity is integrable, attention
should be paid in the numerical integration. In this paper,
the element boundary is chosen to be coincident with the
singular curve, if any. Then the integrand is finite inside an
element, and hence the quadrature formula can be em-
ployed directly.

Worthy next of separate consideration is the contribu-
tion from the boundary eclement, the N+ /th element,

6
alx(x, }’) = E ‘Pfe)Bi(lla Ly, 13)
i=1

—1), etc.

(14)

(e)
Bl 15, 15).
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Fig. 3. Typical mesh division for rectangular dielectric waveguide. The

dashed line represents the actual waveguide boundary.
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Fig. 4. Mapping of elements: (a) local coordinates, and (b) original
coordinates. The circles are nodal points, while the dots are sampling
points in the Gauss—Hammer quadrature formula.
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Fig. 5. Nodes on the boundary element and corresponding basis func-
tions.

along the mathematical circle I'. As shown in Fig. 3, the
circle has been uniformly divided into N, intervals. The
field on the boundary I is again expressed as

¥(6) = Ty B (9) (15)
7

where ¢{V*D’s are the unknown field values on T' and
B,(¢)s are the corresponding basis functions (Fig. 5).
For continuity of the fields with (12), the basis functions
B,(¢)’s are also chosen as quadratic functions of ¢ in each
interval. Hence, some analytic integration formulas for
[B(¢)e’™*dd and [B,(¢p)e '™*d¢ should be employed
to compute the boundary-element matrix corresponding to
the last term in (10).

To assure that the space harmonics in (8) can express the
boundary fields at the sampled nodes properly, the number
of terms included in (10) should be chosen no less than the
number of nodes along the boundary. For the case shown
in Fig. 3, where electric and magnetic conductors may be
placed in the x—-z and y-z planes, odd space harmonics
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of 2N, +1 terms, at least, are needed to give satisfactory
results in computation.

Finally, the variational equation (10) is solved by the
Ritz method. This then leads to a matrix equation

[P]-[¥]=[S] (16)
where [¥] is the column vector composed of the nodal
unknowns, while [P] and [S] are known matrices. The
matrix [P] is of the banded type and is obtained by
assembling the contribution from each element. Though
(16) can be solved efficiently by various numerical tech-
niques [17], computer core memory may still be inadequate
to store all the nonzero terms of [P] when the system is
extremely large. In such a case, the frontal solution tech-
nique [18], which is advantageous in the use of core mem-
ory, is recommended in numerical computation.

The basic ideas of this technique can be briefly de-
scribed. While assembling the element matrices, the nodal
unknown is eliminated as long as every element containing
the node has been accounted for. The corresponding rows
of [P] and [S], after eliminating this unknown, are stored
in an auxiliary storage and are free from the core memory
for the element to be assembled next. After all elements are
assembled and all unknowns are eliminated, the equations
in the auxiliary storage are read in reverse order and the
unknowns are solved by successive back-substitution. It is
the back-substitution process that takes much CPU time.

The efficiency of this technique relies on the element
numbering scheme rather than the node numbering scheme.
For scattering problems, the scattered field, which we are
more interested in, is directly related to the boundary field.
Hence, by assembling the last element corresponding to the
boundary one, we may obtain a set of equations involving
only the unknowns on the boundary I'. Since the boundary
field can be solved by these equations, it is unnecessary to
call for the auxiliary storage to execute the time-consuming
back-substitution process. For the typical mesh shown in
Fig. 3, the number of total unknowns is 250 and the
front-width is 36; however, the actually required core mem-
ory for handling [ P] is only about 650 ( = 362/2)!

V. NUMERICAL RESULTS

A Fortran program for an arbitrarily shaped, inhomoge-
neous, and anisotropic dielectric waveguide (Fig. 1) has
been implemented on a VAX-11/780 mini-computer.
However, only the computational results for the guide with
rectangular cross section and inhomogeneous material are
presented in this paper. Especially for the rectangular one,
we have made full use of the waveguide symmetries so that
the computational loads may further be reduced.

The rectangular dielectric waveguide under considera-
tion has dimension a X5 (a > b) as shown in Fig. 6(a).
This study deals mainly with two specific types of refrac-
tive index, namely the step-index profile

2
n?(x,y) =¢€,(x,y) = {”C’ IxI<a/2,1y|<b/2
1, elsewhere

17)



WU AND CHEN: VARIATIONAL REACTION THEORY

T X
j’_ n(x,y)
o —
@
I
r
n;/r €r=15
r=
2 1/6 "
f— a —~| electric
(b) conductor
nl{' v
AN
AN
e\
A z
©

Fig. 6. Geometry of (a) rectangular dielectric guide and (b) image guide.
(¢) Figure to define incident E-wave and incident angle 6.

and the a-power profile

n*(x, y) =n;—(nz=1)-[f(x, »)]" (18)

where

f(x,9) = {max(px/ al,Ry/Bl).  IxI<a/2,1y<b/2,
L elsewhere.

Note that the a-power profile reduces to the step-index one
as a tends to infinity.

First consider the image guide shown in Fig. 6(b), which
1s a special case of the rectangular dielectric waveguide
(Fig. 6(a)) possessing the symmetry when a perfect electric
conductor is inserted in the center x-z plane. Let an
E-wave with a propagation vector in the y—z plane be
incident upon the image guide with an angle § with respect
to the z-axis (Fig. 6(c)). The guide dimension is a = A, and
b/2 =X, /2, where A is the wavelength in free space. As a
check of the program, we consider a step-index waveguide
with dielectric constant e, =1.5. The longitudinal compo-
nent of the incident field now takes the form

Ei=2j-sin(k,y-sind) (19)
due to the presence of the electric conductor.

The,scattering coefficients e;, and 43 , defined in (8) and
(9), for various incident angles 8 are shown in Fig. 7. Since
the incident wave is also symmetric with respect to the y—z
plane, the scattering coefficients for even m vanish. For
the normal incident case, i.e., # =90°, the E- and the
H-waves are separable and, hence, k3 ’s are zero. And for
the oblique incident case where 6+ 90°, both E- and
H-waves are excited and coupled as reflected in Fig. 7.
Especially for the grazing incident case (6 =0°), both
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Fig. 7. Amplitude of scattering coefficients versus incident angles 6 for
step—ix;dex image guide. Parameters used are a= Ay, b/2=1A, /2, and
€, =n,=15.

P/

Fig. 8. Scattering coefficients for an inhomogeneous wave incident (}B|
> k). The step-index image guide considered has parameters: a = 2A,,
b/2=X,, and ¢, =1.5. Depicted in the figure are four poles which
correspond to guided modes Ef|, E3, Ef;, and Ej;.

waves are so strongly coupled that the scattered wave is
dominantly an HE-wave [20].

The scattering coefficients for |8|> k,, which can pro-
vide a significant physical implication (such as revealing
the guidance of waves), are discussed in the following.
Fig. 8 shows the normalized scattering coefficient
lei|-exp(—2}k,|r) for the image guide as defined by Fig.
6(b). The most attractive point about the figure is that
there exist poles of the scattering coefficient, which corre-
spond to the propagation constants of guided modes in the
waveguide.

Now, one may suggest two properties to.facilitate the
searching scheme for each pole B;: 1) the sign of the
scattering coefficient changes when B is across B,, and 2)
the reciprocal of the scattering coefficient is essentially
linear near B,. For the guide consisting of lossy material,
the pole B8, is complex. One ‘must seek the pole in the
complex plane, and the Bessel functions with complex
arguments should be required. However, when the material
is of low-loss tangent, the pole is near the real axis.
Therefore, one need only search for two B8’s near the pole
along the real axis and then employ the rule of “false
position” to calculate the approximate 8, [21].

The aforementioned pole ‘searching scheme will be
utilized to calculate the propagation constants of the wave-
guide. The corresponding dispersion curves will be given in
terms of the normalized propagation constants 22 and the
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Fig. 9. Comparison of our numerical results, dispersion relations of
principal modes Ej; and Ej;, with those of previous works. Step-index
rectangular dielectric waveguide is adopted with parameters: n,=1.5
and a/b=2.

normalized frequency # [1] where

2
o (B/k)=1
n2-1
ga=i—”o- Y (20)

A note on the steps in seeking a pole is also worth
mentioning. For any given %, two points of #? in the
interval (0,1) are first chosen so that the scattering coeffi-
cients have a 180° phase shift. The poles can thus be found
by employing the Mueller’s iteration scheme of successive
bisection and inverse parabolic interpolation [22]. Gener-
ally speaking, one takes six iterative steps, at most, to give
satisfactory results for each pole.

Remaining is the study of the rectangular dielectric
guides as shown in Fig. 6(a). Here, various symmetries with
respect to the x—z plane and the y -z plane are utilized to
reduce the computer memory and time. For instance, to
discuss the principal mode Ejj, which has the transverse
E-field polarized dominantly in the x-direction, an electric
conductor and a magnetic conductor may be placed over
the y—z plane and the x-z plane, respectively, without
disturbing the field distribution. The other principal mode
E{, can be found with the two symmetries interchanged.
For the step-index waveguide with aspect ratio a/b=2
and refractive index n_=1.5, the computed dispersion
relations of these two principal modes are shown as dot
points in Fig. 9. They are also compared with those of
Goell’s [1] and Marcatili’s [2] works. The excellent agree-
ment with Goell’s results, at least, supports the correctness
of our program. For the typical mesh division in Fig. 3, the
CPU time required on the VAX-11 /780 mini-computer to
compute an eigenvalue is about 2 min. It is also found that
this time increases nearly proportional to the square of the
total number of elements.

In Fig. 10, we examine the effect of various a-power
profiles on the principal mode Ej; of the rectangular
waveguides with n,=1.5 and a /b =1. Since the two prin-
cipal modes are degenerate in this case, no specification on
polarization is indicated. Note that for larger values of a,
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Fig. 10. Dispersion relations of principal mode Ej; with a as parame-
ters. Rectangular guide of a-power profile is considered with a /b=1
and n, =15.
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Fig. 11. Dispersion relations of principal mode Ef; with An, (=n_-1)
as pardmeters. Rectangular guide of a-power profile is adopted with
a/b=1and a=2.

Fig. 12, Effect of aspect ratios on the difference of normalized propa-
gation constants between two principal modes. The curves are for
rectangular dielectric waveguides of a-power profile with n_=1.5 and
a=2.

the corrésponding propagation constant is larger, and hence
the field is more confined in the guide.

The effect due to the difference in refractive indices, i.e.,
An_.=n_—1, is presented in Fig. 11. The guides concerned
here are of unity aspect ratio and parabolic index profile,
Le., a=2.

For the waveguides with aspect ratio greater than 1.0,
the two principal modes E} and E{} are no more degener-
ate. The associated birefringence is important in polariza-
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tion-sensitive devices. For this usage, a single-mode wave-
guide should be chosen based on practical consideration.
In this case, the theory proposed in this paper is very
promising since the fields of the two principal modes are

not well confined in the waveguide structure. As an exam- |

ple, we consider the rectangular waveguides with a para-
bolic index profile and n,=1.5. The difference of the
propagation constants A%2 between these two polariza-
tions is shown in Fig. 12. Guides with various aspect ratios
such as a /b =4/3, 2, 3, and infinity have been considered.
Note that the curve for the infinity aspect ratio is obtained
from the analysis of the slab case.

VI

By the reaction concept, and coupled with the radiation
and continuity conditions, a variational reaction theory has
been established and applied to attack the problems of
electromagnetic scattering by dielectric waveguides. The
derived variational equation has been solved by the
finite-element method together with the frontal solution
technique. It has been found that more accurate results can
be obtained due to the proper handling of the boundary
conditions. The versatility of the new approach is reflected
in the use of the finite-element method, which can easily
and systematically tackle the waveguides with complex
geometries and general material media. The developed
program has been found very powerful due to a large
reduction in core memories via the frontal solution tech-
nique so that CPU time is the only factor of limitation.

In this paper, the poles of the scattering coefficients have
been investigated thoroughly and related to the propa-
gation constants of the waveguides. The scattering analysis
may also be applied to characterize the phenomena such as
the longitudinal shift and the wave shaping of an incident
beam. Besides, this theory can be applied easily to other
complex problems. Some related works (for instance, the
study of dielectric waveguide junctions or discontinuities)
are in progress and will be reported in the near future.

CONCLUSIONS
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